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Abstract
Introduction. Despite the large number of analgesic drugs available currently, pain therapy is still a challenging issue for 
researchers and clinicians. The search for new drugs that could relieve patients from pain is not only justified, but also highly 
recommended.  
Objective.This study aimed to perform antinociceptive screening of 4 various 1,2,4-triazole-3-thione derivatives (TPB-2, 
TPB-4, TPF-32 and TPF-38) in the hot-plate test in mice, which is an experimental model allowing the testing of compounds 
alleviating acute thermal pain.  
Materials and method. Experimental verification of the antinociceptive effects of the tested compounds (administered 
intraperitoneally in a constant dose of 300 mg/kg) was performed in the hot-plate test in mice, by calculating maximum 
possible antinociceptive effects (MPAE in %) at 4 various pretreatment times (15, 30, 60 and 120 min.).  
Results. TPB-2 exerted strong antinociceptive effects with MPAE ranging between 18.54 – 35.43% in the hot-plate test. 
Similarly, TPF-32 exerted firmly established antinociceptive effects with MPAE ranging from 13.50 – 37.05%. In the case of 
TPB-4 and TPF-38, both compounds produced slight changes in MPAE in the hot-plate test in mice. These agents can be 
classified as virtually ineffective in the hot-plate test.  
Conclusions. The screening test revealed that TPB-2 and TPF-32 exerted a clear-cut antinociceptive effect in the hot-plate 
test in mice. If the results from this study were to be translated to clinical settings, both TPB-2 and TPF-32 might be beneficial 
drugs for pain relief in humans.
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INTRODUCTION

Experimental evidence indicates that antiepileptic drugs 
(AEDs) are a very specific group affecting the central nervous 
system (CNS). In spite of their anticonvulsant properties, 
the AEDs also exert antidepressant, antiproliferative and 
analgesic effects in humans [1–4]. The analgesic effects 
of AEDs are clearly seen during therapy with tiagabine, 
gabapentin and pregabalin, because these drugs produce both 
the anticonvulsant and analgesic effects in patients [5, 6].

At present, the search for novel drugs affecting CNS relies 
on three main methods. The first focuses on the screening 
of thousands of newly-synthesized compounds in the hope 
of finding the most promising and efficacious agent [7–9]. 
The second method is based on structural transformation 
and chemical modification of the structure of widely used 
drugs with firmly established properties with respect to their 
impact on CNS in vivo [10–12]. The changes in chemical 
structure of currently available drugs are expected to enhance 
their desired properties. The third method is based on the 
detection of agents isolated from medicinal plants, which are 

used by traditional folk medicine to treat some specific illness 
and diseases [13–15]. All three methods have their opponents 
and adherents. However, one can also distinguish a fourth 
method combining all three mentioned-above methods. 
Thus, isolation of agents from medicinal plants, accompanied 
by chemical modification of their core structure to enhance 
their properties, along with preclinical screening of their 
efficacy, may play a principal role in the search for novel 
drugs affecting CNS.

Quite recently, a novel group of compounds (i.e., 
1,2,4-triazole-3-thione derivatives) has gained attention as 
potential anticonvulsant drugs in preclinical studies [16–23]. 
Molecular studies have revealed that agents comprising the 
1,2,4-triazole-3-thione structure exerted anticonvulsant 
effects by affecting GABAA receptors and blocking sodium 
channels in neurons [18, 21, 22]. On the other hand, drugs 
influencing GABAA receptors and blocking sodium channels 
possess the antinociceptive properties in both preclinical 
studies and clinical settings [24–28]. Previously, it has 
been demonstrated that some 4-substituted derivatives of 
5-(4-chlorophenyl)-2-(morpholin-4-ylmethyl)-2,4-dihydro-
3H-1,2,4-triazole-3-thione produced the antinociceptive 
effects in the hot-plate test in mice [29].

Considering the above-mentioned facts, it was of 
importance to conduct preclinical screening to discover 
whether or not some other 1,2,4-triazole-3-thione derivatives 
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produce antinociceptive properties in mice subjected to the 
hot-plate test, which is considered a model of acute thermal 
pain in experimental studies on animals.

MATERIALS AND METHOD

Screening of the antinociceptive effects of four various 
1,2,4-triazole-3-thione derivatives was conducted on adult 
male Swiss mice (weighing 22 – 26  g), maintained under 
standardized housing and laboratory conditions. Each 
experimental group in the screening test comprised four 
randomly selected mice. Experimental procedures involving 
animals were approved by the Local Ethics Committee and 
complied with the ARRIVE guidelines and EU Directive 
2010/63/EU for animal experiments. Only 64 mice were used 
in the screening study.

Four various 1,2,4-triazole-3-thione derivatives 
[5-[(3-chlorophenyl)ethyl]-4-(n-buthyl)-2,4-dihydro-
3H-1,2,4-triazole-3-thione (TPB-2), 5-[(3-chlorophenyl)
ethyl]-4-(n-hexyl)-2,4-dihydro-3H-1,2,4-triazole-3-thione 
(TPB-4), 4-(n-butyl)-5-[(3-fluorophenyl)ethyl]-2,4-dihydro-
3H-1,2,4-triazole-3-thione (TPF-32), and 5-[(3-fluorophenyl)
ethyl]-4-isopropyl-2,4-dihydro-3H-1,2,4-triazole-3-thione 
(TPF-38)], in one fixed dose of 300 mg/kg, were used. All 
the tested compounds were suspended in a 1% aqueous 
solution of Tween 80 (Sigma, Poznań, Poland) and 
administered intraperitoneally (i.p.) in a volume of 0.01 
ml/g of body weight. The compounds were administered 
at four pretreatment times: 15, 30, 60 and 120 min. before 
the measurement of the antinociceptive effects in the hot-
plate test. These pretreatment times were chosen based upon 
information about their biological activity from the literature 
and previous studies by the authors of this study[18].

Hot-plate test. To detect the antinociceptive effects of the 
tested 1,2,4-triazole-3-thione derivatives with respect to acute 
thermal nociception, the hot-plate test in mice was used, as 
described elsewhere [28, 30–33]. The apparatus consisted of 
an electrically-heated surface and an open Plexiglas tube 
(17 cm high × 22 cm diameter) to confine the mice to the 
heated surface (Ugo Basile, Varese, Italy). Each mouse was 
placed separately on the heated surface (55.0 ± 0.1 °C), and 
the time period between placement and a shaking, licking, 
or tucking of the fore- or hind-paws, was recorded by a 
stopwatch. This period of time (in seconds) was considered 
a predrug latency response, which served as the control 
reaction time for each animal.

Subsequently, the animals were administered the 
1,2,4-triazole-3-thione derivatives in a fixed-dose of 300 mg/
kg. Next, the mice were placed again on the heated surface at 
four various pretreatment times (i.e., 15, 30, 60 and 120 min. 
after the 1,2,4-triazole-3-thione derivatives administration). 
Notably, each animal was challenged with the hot-plate test 
twice. To prevent thermal injury to animals in the hot-plate 
test, a maximum cut-off time of 30 seconds was chosen. Mean 
maximum possible antinociceptive effect (MPAE) values 
(± S.E.M.) were calculated according to the formula presented 
elsewhere [34]. Graphical presentation of the results was 
performed using GraphPad Prism version 7.0 for Windows 
(GraphPad Software, San Diego, CA, USA).

RESULTS

Effects of four various 1,2,4-triazole-3-thione derivatives 
on the antinociception in the hot-plate test in mice. TPB-
2 administered i.p. in a constant dose of 300  mg/kg, at 
various pretreatment times before the acute thermal pain 
test, exerted an antinociceptive effect in mice, and the 
experimentally-derived MPAE ranged from 18.54% – 35.43% 
(Fig. 1A). The time to peak of the antinociceptive effect for 
TPB-2 was established at 30 and 60 min. after the drug 
i.p. administration. Similarly, the experimentally-derived 
values of MPAE for TPF-32 were between 13.50% and 37.05% 
(Fig. 1C) and the time to peak-effect was clearly observed 
at 15 min. after drug administration (Fig. 1C). In the case 
of TPB-4 and TPF-38, the tested compounds exerted weak 
antinociceptive effects in the hot-plate test, because their 
MPAE values ranged from 2.76% – 6.71% (for TPB-4) and 
1.42% to 3.23% (for TPF-38), respectively (Fig. 1B, 1D). The 
time to peak of the anticonvulsant effects for both agents 
(TPB-4 and TPF-38) was observed at 15 min. after their i.p. 
administration (Fig.1B,1D).

DISCUSSION

The results obtained in this study confirmed the authors’ 
hypothesis that some 1,2,4-triazole-3-thione derivatives 
possess the antinociceptive properties in the hot-plate 
test in mice. Evaluation of MPAE in animals receiving the 
tested compounds allowed determination not only of the 
antinociceptive effects of the compounds in in vivo model 
of acute thermal pain, but also the time to peak of the 
antinociceptive effects in the animals. In this screening 
test, four 1,2,4-triazole-3-thione derivatives were selected 
and, by comparing their chemical structure, it was evident 
that some structural modifications significantly affected 
and changed the antinociceptive properties of the tested 
agents, especially, if one compared TPF-32 with TPF-38 
(active vs. virtually inactive compound). The most effective 
compounds exerting strong antinociceptive effects in this 
study were those containing 4-(n-buthyl)- substituent (TPB-2 
and TPF-32).

On the contrary, neither 4-(n-hexyl)- substituent in TPB-
4, nor 4-isopropyl- substituent in TPF-38 exerted firmly 
defined antinociceptive effects in the hot-plate test in mice. 
It seems that compounds containing 4-(n-buthyl)- structure 
incorporated into the core of 1,2,4-triazole-3-thione should 
produce antinociceptive effects. However, this hypothesis 
should be verified in further experimental studies in various 
nociceptive models in mice.

The results also confirmed a general hypothesis that an 
agent possessing the anticonvulsant properties can also 
produce antinociceptive effects in experimental animals. 
Previously, it has been documented that tiagabine, gabapentin, 
pregabalin, and vigabatrin (the second- and third-generation 
AEDs) exerted antinociceptive properties and prolong the 
time to the first pain reaction in animals exposed to the 
heated surface of the hot-plate test [28, 31–33, 35]. It has also 
been documented that some 4-substituted derivatives of 
5-(4-chlorophenyl)-2-(morpholin-4-ylmethyl)-2,4-dihydro-
3H-1,2,4-triazole-3-thione, including 2,4-dichlorophenyl- 
(T-100); 4-chloro-(3-trifluoromethyl)-phenyl- (T-102); 
3,4-dichlorophenyl- (T-103); 3-chlorophenyl- (T-104); 
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and 4-bromophenyl- (T-101), exerted the antinociceptive 
effects in the hot-plate test in mice [29]. It was also observed 
that the time to peak of the anticonvulsant effects for the 
five derivatives was established at 60 min. after their i.p. 
administration [29]. The hot-plate test is commonly used 
experimentally, especially, when one can screen various 
compounds to discover whether or not these compounds 
exerted antinociception in mice [36, 37].

Limitations of the study. The main limitation in this study 
was the small number of tested mice in each experimental 
group. In this screening test, only four mice per group were 
used, and during evaluation of the antinociceptive effects, 
four various pretreatment times (15, 30, 60 and 120 min.) 
were applied. This unique approach, on the one hand, allowed 
determination of the time to peak of the antinociception, but 
on the other hand, the S.E.M. values of MPAE were high, and 
resulted from the range diversity of the four values obtained 
from the four mice in each group.

The screening test was conducted in a specific manner 
because the same animals were tested twice, i.e., before 
administration of the 1,2,4-triazole-3-thione derivatives 
(pre-test), and at the respective pretreatment times after 
i.p. injection of the tested compounds (post-test). This 
experimental paradigm eliminated the control (naïve) 
animals in order not to expose the animals to unnecessary 
pain and suffering, which is in agreement with the 3R rules 
(Replacement, Reduction, Refinement) when conducting 
experiments on animals [38].

CONCLUSIONS

In conclusion, TPB-2 and TPF-32 produced the antinociceptive 
effects in mice with the peak of the antinociceptive effects 
established at 30 min. and 15 min. after drug administration, 
respectively. Although the antinociceptive effects of TPB-
4 and TPF-38 were observed in the hot-plate test, their 
antinociceptive strength (power) was insufficient to classify 
them as antinociceptive agents. This was the reason that both 
TPB-4 and TPF-38 were considered as virtually inactive in 
the hot-plate test in mice. The screening of various novel 
compounds in the hot-plate test allowed the selection of 
the most active compounds offering antinociception in 
experimental animals. If the results from this screening test 
were to be translated to clinical settings, TPB-2 and TPF-32 
might be favourable for pain relief in patients.
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